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Least-Squares Phase Refinement. II. High-Resolution Phasing of a Small Protein 
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(Received 2 August 1973; accepted 17 September 1973) 

A recently described technique for direct least-squares refinement of phases has been successfully ap- 
plied to the problem of phasing a 1.5/~ data set of observed structure-factor magnitudes for C. pasteur- 
ianum rubredoxin (M.W. = 6100), given as a starting point a set of phases to 2"5 ~ resolution as deter- 
mined from heavy-atom derivatives. The result is a 1 "5/~ X-ray structure for rubredoxin which generally 
confirms that recently obtained by a method involving the production and refinement of an approximate 
atomic model of the protein. In the present work the structure was obtained without chemical assump- 
tions and with a considerable saving of effort compared with the previous determination. The technique 
also avoided certain small errors in the assignment of side-group structures made in the previous deter- 
mination. Final high-resolution phasing would result from conventional refinement of the direct- 
method structure. An additional point of interest is that the structure of a protein at the atomic level, 
elucidated on purely physical principles, has been found to agree with the deductions from chemistry. 

A difficulty in the use of X-ray analysis in the study 
of protein structure at an atomic level of resolution 
has been the inability of the heavy-atom phasing meth- 
ods to provide phases for the X-ray structure factors 
beyond approximately 2.0 or 1.9 A resolution. Watson 
et al. (1963) appear to have had a limited success in 
the phasing of high-resolution myoglobin data by re- 
finement of an atomic model based upon study of a 
2/~ experimentally phased electron-density map. More 
recently Watenpaugh, Sieker, Herriott & Jensen (1973) 
have succeeded with this technique in the case of C. 
pasteurianum rubredoxin. Even here, however, sub- 
sequent chemical sequencing (McCarthy, 1972) in- 
dicates that the model refined was slightly in error in 
the identity of a few of the side groups. The difficulty 
is essentially one of producing an atomic model from 
experimentally phased maps of a resolution not really 
sufficient for the purpose. 

Data for the present study consisted of the Waten- 
paugh et al. data set for rubredoxin, containing 5033 
structure-factor amplitudes for rubredoxin to 1.54 
resolution as measured by those workers at the Univer- 
sity of Washington and kindly supplied to the author 
by them. Magnitudes of the F 's  appearing in the sys- 
tem of equations 

ahFh = ~ FkFh-k (1) 

were produced by placing the data set on an absolute 
scale (simultaneously adding F000) and processing it to 
correspond to Gaussian atoms of shape exp (-4rZ).  
Magnitudes of the cross products of these terms ap- 
pearing in equations (1) were computed and saved for 
later use. 

Rubredoxin occurs in space group R3, with hexago- 
nal cell parameters a=b = 64.45, c =  32.68/~.. 

* Temporary address: Laboratory of Molecular Biophysics, 
Department of Zoology, South Parks Road. Oxford, England. 

A set of 1608 experimentally derived phases to 2.5/~ 
resolution, based on heavy-atom derivatives of rubre- 
doxin, was also kindly supplied by the investigators 
at the University of Washington. Insertion of these into 
the right-hand sides of equations (1) provided a rough 
initial extension of the phases from 2.5 to 1.5 .A. 

The entire set of phases (with the exception of 000 
and 003) was then subjected to 11 cycles of direct 
phase refinement, as recently described (Sayre, 1972). 
In this type of refinement the phases are adjusted to 
produce a minimum in the value of the expression 

R= ~ lahFh-- ~ FkFh-kl z. 

Since R is a measure of the degree to which equation- 
system (1) is not satisfied, the minimization process 
causes the phases to draw as nearly as possible to a 
solution of those equations. The time per cycle of re- 
finement was approximately 50 rain on a 360 Model 
91 computer. 

A few details may be added at this point. The 5033 
structure factors in the Watenpaugh et al. data set 
are those, out of the 7345 which lie within the 1.54 
sphere, which had peak counts greater than 2a. The 
scale factor and average temperature factor for the data 
set were determined by requiring that the data set, 
after application of these factors, should give a Wilson 
plot resembling as nearly as possible the plots cal- 
culated for several artificial structures containing 436 
point atoms of unit weight* placed in the asymmetric 
unit of the rubredoxin unit cell. The ah in equations 
(I) are given by V ( p - q R - r R  2) (fsq/f), where V= 
volume of the unit cell, R = [hi, p, q, r are parameters 
(Sayre, 1972) which depend upon the degree of in- 

* The actual number of non-hydrogen atoms in rubredoxin 
is 424. The information available to Watenpaugh et al. at the 
outset of their high-resolution work, however, suggested that 
the number was 436, and it was thought to be fairest, for the 
purposes of the present work, to adopt the same number. 
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(a) (b) 
Fig. 1. Rubredoxin, sections z= 17/60 through 23/60. (a) 1.5 A, direct-method phases. (b) 1.5 A, phases obtained by Waten- 

paugh et al. (e) 2.5 A, heavy-atom phases. The maps were calculated using the structure-factor amplitudes as prepared for 
use in the direct-method procedure (i.e. amplitudes are considerably sharpened). 
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Fig. 1 (cont.) 
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completeness of the data set and which in the present 
case were found, by calculations on artificial struc- 
tures with similar data incompleteness, to be 0.737, 
0.085, and 0.716 respectively, and f s ~ / f = 8 - 1 / z  exp 
(nZR2/8) for the Gaussian atoms employed. The mag- 
nitude and other information precomputed for each 
F k F h _ k  cross product were stored in a data set of 14 
magnetic tapes (with data packing this could have been 
reduced to seven). In the refinement the initially given 
1608 heavy-atom phases were permitted to change only 
slowly in the first few cycles. In addition, the equa- 
tions arising from the 29 structure factors out to 10 A 

resolution were not used in the refinement, as being 
probably strongly influenced by the presence of sol- 
vent. The value of ~]a~ ,Fh- -~FkFh_k[  2 after 11 cycles 
was 1.09 x 1015. The resulting phase set, despite a mean 
difference of 46.6 ° compared with the 1.5 A phase set 
produced by Watenpaugh et al. after four cycles of 
zfF syntheses and four of least-squares refinement (see 
Table 2 of their paper), provides a readily interpretable 
electron-density map. Several factors may enter into 
the rather large phase difference, including the tendency 
of the direct method to produce an equi-atom struc- 
ture, whereas the Watenpaugh et al. phases, following 
the real structure, reflect the presence of an Fe and 
several S atoms, plus C, N, and O atoms with a large 
range of thermal motions. When a set of phases was 
produced by minimization starting from the Waten- 
paugh et al. phase set itself, the mean phase difference 
was 31.7 ° , although the electron-density map showed 
little obvious change except in peak heights. 

Fig. l(a) shows a portion of the 1.5 A electron-den- 
sity map resulting from the extension and refinement. 
For comparison, Fig. l(b) shows the same portion of 
the 1.5 A map with phases as obtained by Watenpaugh 
et al. Fig. 1 (¢) shows the starting point for the process 
of extension and refinement, i.e. the 2.5 A electron- 
density map containing the 1608 terms with heavy- 
atom phases. All three maps were computed identically 
and contoured at the same absolute levels. Details of 
the maps are compared in Figs. 2 and 3. 

In general quality the direct-method map is not 
quite as clean as the Watenpaugh et al. map, but it is 
nevertheless sufficient to allow approximately 400 of 
the 424 atoms in the molecule to be correctly located. 
This figure includes 356 atoms (205 main-chain and 
151 side-group) which can be seen quite clearly in the 
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map and 44 atoms (11 main-chain and 33 side-group) 
which are not seen so clearly but which can be cor- 
rectly filled in from the indications of the map and 
the positions of other atoms. There are 24 atoms (three 
main-chain atoms at the ends of the chain, and 21 side- 
group atoms belonging to 10 residues) which are un- 
assignable or doubtfully assignable on the basis of 
the map. 

In terms of side groups, 36 can be seen in their en- 
tirety and eight more (11, 17, 32, 40, 46, 48, 50, 51) 
become assignable on the basis of filling in. As stated 
above there are 10 residues (1, 2, 3, 14, 16, 21, 31, 47, 
53, 54) in which there is at least one atom which is 
doubtful or unassignable and whose side-group struc- 
ture cannot therefore be entirely decided from an ex- 
amination of the map. There are few if any atoms in 
false sites, the phase refinement appearing to have the 
property that while it may sometimes cause an atom 
to be omitted it seldom creates a false one. 

Of the 54 residues of rubredoxin, six have a partic- 
ular interest here in that their side-group structures 
have been shown, by the subsequent completion of the 
chemical sequencing of rubredoxin, to have been 
slightly incorrectly assigned* in the atomic model for- 
mulated for refinement by Watenpaugh et al. The 
details are summarized in Table 1. At five of these six 
residues the side-group structure indicated by the di- 
rect-method map is in agreement with the chemical 
evidence [see for example Figs. 2(h) and 2(0]. The 
remaining side group (21) is one of those which is un- 
certain in the direct-method map. 

Table 1. S i x  s ide-group s tructures  

8 
12 
21 
24 
41 
44 

Seattle Chemical Direct 
model (a) sequencing(b) method 

Ile Val b 
Val Ile b 
Glu Asp 
Ile Val b 
lie Leu b 
lie Val b 

The effect of the direct method in driving the struc- 
ture toward equality of atoms can be noticed, for ex- 
ample, in Fig. 2(f) ,  where the Fe atom and one of the 
4 cysteine S atoms to which it is bonded are shown; 
it is evident, by comparison with other portions of the 
structure shown in that Figure, that the Fe and S peak 
heights are not much greater than the average peak 
height. 

In addition to the features already discussed, the 
direct-method map shows approximately a dozen fairly 
strong peaks lying in the solvent part of the structure. 
These all occur close to the surface of the molecule at 

* A private communication from L. H. Jensen indicates 
that the correct identities of residues 8, 12, 24, 41, 44 had in 
fact become known to the University of Washington investiga- 
tors by the conclusion of their work. 

sites where a significant degree of attachment of sol- 
vent might be expected, and with one exception they 
coincide with strong peaks in the Watenpaugh et al. 
map. It appears likely, therefore, that certain of the 
more pronounced features of the solvent structure are 
reflected in the direct-method phases. 

Attempts to carry out extensions from 3 A (967 
heavy-atom phases) produced maps which although 
nicely atomic do not appear to be interpretable in 
terms of protein structure, indicating that the initial 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig.2. Various side groups. All are taken from the direct- 
method map except (b),which is from the map using the phases 
of Watenpaugh et al. (a) Trp 37. (b) Trp (37). (c) Tyr 11. 
With an atom missing, this is one of the more poorly 
rendered groups. The Watenpaugh et al. map gives very 
good definition for this group; see their Fig. 3. (d) Phe 49. 
(e) Pro 20. (f) Cys 9, showing also one of the Fe-S bonds. 
The peak heights of the Fe and S atoms are lower than they 
would be in nature, reflecting the attempt on the part of the 
phase refinement to produce an equi-atom structure. (g) Asp 
35. (h) Val 8. (i) Val 44. In (a)-(g) the atomic coordinates 
shown are those of Watenpaugh et al. (their Table 3). In 
(h) and (i) their coordinates, which are for isoleucine, are not 
used. 

(a) (b) 

Fig.3. A section of main chain, running from residue 29 
(lower right) to residue 32 (lower left). (a) Direct-method 
map. (b) Map using the phases of Watenpaugh et al. Atomic 
positions taken from their Table 3. 
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extension process had in these cases started the mini- 
mization on the walls of non-physical, or more ac- 
curately non-chemical, minima. Fig. 4 shows the re- 
sult of one such attempt, to be compared with Fig. 
1 (a) and (b). Starting the process from 2 A~ (2813 heavy- 
atom phases), on the other hand, produced a result 
similar to that obtained by starting from 2.5 A.. 

In a minimization problem with approximately 5000 
parameters it is not at present feasible to form and 
solve the system of normal equations A T A d = - - A T r  

Fig.4. Rubredoxin, sections z=17/60 through 23/60. Non- 
chemical structure resulting from attempt to extend and 
refine phases from 3 A, heavy-atom phases. 
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Fig. 5. R as a function of the number of cycles of refinement. 
Upper curve: principal diagonal approximation, extension 
from 3 A, time per cycle 25 min (360 Model 91). Lower 
curve: conjugate-gradient technique, extension from 2 A,, 
time per cycle 50 rain. 

from which the increment d to be applied to the par- 
ameters is commonly derived.* One approach to re- 
ducing the cost of the minimization is to ignore every- 
thing in the normal equations except the terms on the 
principal diagonal. This technique greatly reduces the 
size of the computation but also lowers the rate of con- 
vergence considerably; it nevertheless accomplished 
the minimization successfully in several refinements on 
the rubredoxin data. A better approach,]" however, is 
based upon the observation that d is also the vector 
which minimizes IIAd+rll, and that even a few steps 
of a conjugate-gradient minimization process (Hestenes 
& Stiefel, 1952) will develop a fairly good approxima- 
tion to d. This technique, with five steps of conjugate- 
gradient minimization, was used in the refinements 
from 2.5 A~ and 2 A,; it costs more per cycle, but shows 
rapid and steady convergence, as may be seen in Fig. 5. 
Using the latter technique, the complete extension and 
refinement process for rubredoxin at a typical large 
computing installation would cost today approximately 
$7500. 

Summary  

High-resolution phasing of protein data by the direct 
method studied yields phases which appear to have 
slightly more random noise superposed than phases 
derived from an atomic model, but it is likely also to 
produce fewer systematic errors arising from mistaken 
positions. This suggests that a two-stage process may 
provide a path for the most accurate high-resolution 
phasing for proteins: use of the direct method for 
producing the initial high-resolution maps, followed 
by conventional refinement of the resulting structural 
model. This process has also the advantage of rapidity, 
objectivity, and convenience, and would reduce con- 
siderably the number of intensities required to be col- 
lected from the heavy-atom derivatives of the protein. 

Because of the size of the minimization problem in- 
volved, the practical limit for this type of phase refine- 
ment probably lies at present in the 15-30000 molec- 
ular weight range. 

The author wishes to express his thanks to Professor 
Dorothy Hodgkin for her kind invitation to spend a 
year with her group at the Laboratory of Molecular 
Biophysics, Oxford., where the analysis of the direct- 
method maps was carried out, and to Professor L. H. 

* Let Wh=tth+iVh=ahFh--~.fkFh_k, h=hx . . . . .  hR" Let 
r2j- 1 = UhJ and r2j = Vhj. Then r is the 1 x 2R vector of residuals 
(r~). Let the parameters (phases) be ~Pi, i =  1 . . . . .  P. Then A is 
the P x 2R Jacobian matrix (~rt/O~j). In the work on rubredoxin, 
R and P were approximately equal (R=5005, P = 5 0 3 2 ) .  A 
(probably) preferable procedure would have employed the 
reflections observed to be weaker than 2a to increase R to 
7317, thereby increasing the number of observational equa- 
tions. Improvement could also have been secured by making 
use of a non-uniform weighting scheme ( R = ~ w h ] a h F h - -  
~ Fk Fh-kl2).  

t Suggested to the author by Dr Philip Wolfe of the IBM 
Research Center, Yorktown Heights, New York. 
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Jensen and his colleagues at the University of Washing- 
ton for their help and interest in this study and for their 
generosity in allowing the use of their data on rubre- 
doxin. 
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Thermal Diffuse Scattering Corrections 
for Single-Crystal Integrated Intensity Measurements 
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A computer program has been developed for calculating one- and two-phonon thermal diffuse scattering 
corrections for integrated X-ray intensity measurements. The correction includes the anisotropy in the 
diffuse-scattering intensity distribution and the geometry of the scan for crystals of any symmetry type. 
The calculated two-phonon correction is not negligible and may be as large as the one-phonon correc- 
tion for high-order reflections. The effects of slit size, scan range, crystal orientation, crystal misalign- 
ment, and neglect of phonon dispersion on the calculated corrections are investigated. 

Introduction 

The attainment of accurate structure factors from X- 
ray intensity measurements requires in many cases a 
correction for the thermal diffuse scattering (TDS) in- 
cluded in intensity scans. The difficulty of the calcula- 
tions has prevented the routine application of TDS 
corrections in X-ray crystallography. The general ap- 
proach to calculating TDS corrections and some of the 
approximate methods that have been used are described 
by Cochran (1969). 

Until recently, most approximate methods have in- 
volved the assumption of a spherical TDS distribution 
about the Bragg reflection. Rouse & Cooper (1969) 
have developed a program to calculate the one-phonon 
correction which correctly includes the anisotropic 
TDS intensity distribution for crystals of any symmetry. 
Walker & Chipman (1970) have written two programs 
for calculating the one-phon0n TDS correction which 
are restricted to cubic crystals. The first program 
(Walker & Chipman, 1970, 1971 a) includes the primary- 
beam divergence, wavelength distribution, and anisot- 
ropy of the scattering. The second program (Walker 
& Chipman, 1970, 1971b) neglects the primary-beam 
divergence, but includes a simplification in the calcula- 
tion which makes the program fast enough to be used 
routinely with intensity measurements. 

* Present address: Department of Chemistry, State Univer- 
sity of New York, Buffalo, N.Y. 14214, U.S.A. 

In this paper a TDS correction program for 0 :20  
scans is described which is similar to the faster program 
of Walker & Chipman but is not restricted to cubic 
crystals. In addition, an approximate correction for 
two-phonon TDS intensity is included. The calculation 
of the two-phonon correction has also been simplified 
and requires little additional effort. The program has 
been used to investigate the effects of scan range, slit 
size, and crystal orientation and misalignment on the 
corrections. 

Theory 

For acoustic phonons, neglecting dispersion, primary- 
beam divergence, and mosaic spread, the ratio of one- 
phonon-included TDS intensity to the Bragg intensity 
for a scan is given by 

11 kBT I -- ~ wt Jl(q)d3q 
~ -  I~ v _ (1) 

where the integration is over the volume in reciprocal 
space swept out by the scan and 

Jr(q) = ~712 ~ ,  [H" e#(q)] 2 
• : -  oVj2(q ) (2) 

Here H is the scattering vector, q = Iq[, kn is Boltzman's 
constant, T is the temperature, Q is the density of the 
crystal, v is the unit-cell volume, and V~(q) is the vel- 
ocity of the acoustic lattice wave q. The e j (q ) ( j=  1,2, 3) 
are unit vectors in the directions of polarization of the 
lattice wave. 


